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Abstract – Quantum field theories lead in general to a large number of coupled nonlinear
equations. Solving field equations in analytic form or through lattice-based computations is a
difficult task that has been only partially successful. We argue that the theory of nonlinear
dynamical systems offers valuable insights and a fresh approach to this challenge. It is suggested
that universal transition to chaos in nonlinear dissipative systems provides novel answers to some
of the open questions surrounding the standard model for particle physics.
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Overview and motivation. – Quantum field theory
(QFT) is a mature conceptual framework whose predic-
tive power has been consistently proven in both high-
energy physics and condensed-matter phenomena [1–3].
From a historical perspective, QFT represents a successful
synthesis of quantum mechanics and special relativity and
consists of several models. Among these, gauge theories
play a leading role. The standard model (SM) is a subset
of QFT whose gauge group structure includes the electro-
weak and strong interactions of all known elementary
particles. SM is a robust theoretical framework; however,
it contains some 20 adjustable parameters whose physical
origin is presently unknown and whose numerical values
are exclusively fixed by experiments.
Non-Abelian gauge theories are essentially non-

linear field models. Quantizing this class of models is a
non-trivial effort and raises a series of theoretical chal-
lenges [4–6]. For example, no complete quantum version of
classical gravity exists. Quantum chromodynamics (QCD)
is considered a reliable field theory at short distances but
because its coupling constant becomes large in the infrared
sector, standard perturbative techniques do not apply. At
present, there is no universal prescription for deriving and
handling closed-form solutions of QCD field equations.
This is in manifest contrast with quantum electrodynam-
ics (QED) and the electroweak theory, where perturbative
methods are applicable and analytic results possible. In
general, dealing with closed-form solutions of field theories

(a)E-mail: ervingoldfain@gmail.com

is seldom a practical alternative. For example, Heisen-
berg’s non-perturbative quantization procedure [7,8] or
Schwinger-Dyson formalism [9] lead to an infinite set of
coupled differential equations which connect all orders of
Green’s functions. This system does not have analytic and
uniquely determined solutions. In these instances, one
seeks plausible assumptions that simplify the equations or
employs suitable numerical techniques for approximation.
In its traditional form, one frequently cited shortcoming

of QFT is its inherent limitation in dealing with the
effect of highly unstable fluctuations or with a dynamics
regime that is driven far away from equilibrium [10–12]. In
general, pattern formation is possible in out-of-equilibrium
physical systems that are open and nonlinear [13–15].
Within a closed system patterns may only survive as a
transient and die out as a result of the relaxation towards
equilibrium. It is for this reason that traditional QFT,
with few notable exceptions, is largely unable to properly
detect and characterize pattern formation. Recent years
have shown that pattern formation is relevant to a wealth
of applications ranging from reaction-diffusion processes,
nonlinear optics, nanostructures and fluid mechanics to
hot plasma, traffic models, epidemic spreading, transport
in heterogeneous media and neural networks. [13,16,17]
Understanding non-equilibrium phenomena and pattern

formation is still in its infancy. Progress in this field has
benefited from tools that have been recently devel-
oped for nonlinear dynamics, bifurcation and stability
theory [13,15,18–22]. Our goal here is to explore the far-
from-equilibrium sector of field theory using some of these
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newly developed methods. The underlying motivation
is that nonlinear dynamics brings novel insights and a
practical alternative for the analysis of field equations.
The paper is organized as follows: working at a classi-

cal level, we start from a non-equilibrium “toy” model
containing an Abelian gauge field coupled to a mass-
less scalar field. The concept of universality and the
emergence of the complex Ginzburg-Landau equation
(CGLE) are discussed in the next section. Mass genera-
tion through period-doubling bifurcations of CGLE and
the link between CGLE and the generalized exclusion
statistics (GES) follow from these premises. Summary and
concluding remarks are detailed in the last section.
Our contribution needs to be exclusively regarded as a

preliminary research on the topic. It is neither fully rigor-
ous nor comprehensive. We wish to convey a new qualita-
tive view rather than an in-depth analysis of phenomena.
Independent studies are required to confirm, expand or
refute these tentative findings.

A “toy” model in non-equilibrium field theory.
– As mentioned earlier, nonlinear field theories amount
to a large set of coupled differential equations that are
difficult to solve or manage through numerical approxi-
mations. The universal nature of nonlinear dynamics near
the threshold of the primary instability (see, e.g., [16])
suggests a shortcut route. One can start from a plausible
“toy” model and generalize results to more realistic theo-
ries. One example of such a “toy” model of classical field
theory describes an Abelian gauge field aµ(x, t) in inter-
action with a complex massless scalar field ϕ=ϕ1+ iϕ2 =
ϕ(x, t). The Lagrangian density reads [23]

L =−
1

4
FµνF

µν + |Dµϕ|
2
. (1)

Here, µ, ν = 0, 1, 2, 3 denote the space-time index, x=
(x1, x2, x3) the spatial coordinate, F

µν the gauge field
tensor, e the coupling constant and

Dµ = ∂µ+ ieaµ (2)

the operator of covariant differentiation. If we take
ϕ1≫ϕ2 for simplicity, field equations derived from (1)
are given by

Dµ(Dµϕ) = 0,

∂νFµν = 2e
2aµϕ

2.
(3)

Developing (3) yields

�ϕ=−ie(ϕ∂µaµ+ aµ∂
µϕ− aµ∂µϕ)− e

2aµaµϕ,
�aµ = ∂

ν∂µaν − 2e
2ϕ2aµ,

(4)

where �= ∂2/∂t2−∇2 is the d’Alembert operator. To
further streamline the derivation and highlight the basic
argument, we proceed by assuming that the gauge field
satisfies

∂µai = 0 for i= 1, 2, 3. (5)

If a0 denotes the temporal component of the gauge field,
the system (4) can be brought to the generic form of a
coupled system of partial differential equations,

∂0ϕ= η,

∂0η= f(η, ϕ, a0, ξ,∇η, . . .),

∂0a0 = ξ,

∂0ξ = g(η, ϕ, a0, ξ,∇η, . . .),

(6)

in which f(. . .) and g(. . .) are time-evolution functions
and ∂0 = ∂/∂t. (6) may be presented in vector form as

∂0u=U(u,∇u, . . .), (7)

where u= (η, ϕ, ξ, a0). We next posit that transition to
non-equilibrium in (7) is controlled by a small exter-
nal parameter ε≪ 1. This parameter is continuously
adjustable and measures the departure from equilibrium
(εc = 0). Accordingly, (7) becomes

∂0u=U(u,∇u, . . . , ε). (8)

The physical content of ε depends on the context of the
problem at hand. In open systems ε encodes the combined
effect of environmental and internal fluctuations [24].
Critical behavior in continuous dimension identifies ε with
the Wilson-Fisher parameter of the regularization
program (ε= 4− d) [25,26]. In models involving frac-
tional dynamics, ε characterizes the range of non-
local interactions in space or the extent of temporal
memory [22,27–29].

Universality and CGLE. – Non-equilibrium
processes such as (8) display remarkable universality.
Regardless of the specific application, macroscopic
patterns that develop near the threshold of a dynamic
instability are robust and largely insensitive to micro-
scopic fluctuations [13,16,17].
Since one is familiar with the language of harmonic

oscillations, we are interested in the simplest bifurcation in
the dynamics of u(x, t) that creates oscillatory behavior.
This is known as a Hopf bifurcation and represents the
simplest transition that leads from a focus point to a
periodic behavior. As the bifurcation point is approached,
the focus point becomes unstable and gives rise to a
harmonic limit cycle. CGLE is a universal model that
holds for all pattern-forming systems undergoing a Hopf
bifurcation [13,16]. The theory of the reduction to CGLE
from generic systems of autonomous nonlinear equations
such as (8) has been developed by several authors. The
derivation of CGLE for a (1+1)-dimensional system starts
from the ansatz

u(x, t) = u0+A(x̃, t̃) exp[i(kcx−Ωct]u1+c.c., (9)

where x̃, t̃ represent slow variables and kc, Ωc are critical
values in wave number and frequency spaces. Replacing
in (8), dropping the tildes and expanding in power series
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of the small parameter ε̃= ε− εc leads to CGLE in its
standard form

∂tA=A+(1+ ic1)∇
2A− (1− ic3) |A|

2
A. (10)

Here,
A(x, t) = ρ(x, t) exp[−iΦ(x, t)] (11)

is a complex-valued amplitude defining the slow modula-
tion in space and time of the underlying periodic pattern.
The real parameters c1, c3 denote the linear and nonlinear
dispersion parameters, respectively. The limit c1, c3→ 0
corresponds to the real Ginzburg-Landau equation,
whereas c−11 , c

−1
3 → 0 recovers the nonlinear Schrödinger

equation.

Higgs-free generations of particle masses. –
Among the simplest coherent structures generated by
CGLE are plane-wave solutions having the form [13,16]

A(x, t) =A0 exp[−i(qx+mt)]+ c.c.,

A0 =
√

1− q2.
(12)

The frequency m satisfies the dispersion equation

mq = c1q
2− c3(1− q

2) (13)

and q ∈ [−1, 1] represents the phase gradient of the
complex amplitude (12),

q=−∇ |Φ| (14)

Linear stability analysis of (12) reveals that plane waves
having a wave number larger than the so-called Eckhaus
threshold

qE =

√

1− c1c3
2(1+ c23)+ 1− c1c3

(15)

are unstable with respect to the long-wavelength modu-
lation. In particular, a vanishing Eckhaus threshold
leads to the Benjamin-Feir-Newell (BFN) instability
criterion (A.1)

c1c3 = 1. (16)

The dispersion equation (13) has two complementary
limits: q=±1 (A0 = 0) and q= 0 (A0 =±1). Arguments
presented in appendix A suggest a natural identification
of these two modes with fermion and electroweak gauge
boson fields, respectively. Equation (14) implies that
fermions have a non-vanishing and uniform phase gradi-
ent ∇Φ �= 0, whereas gauge bosons have a uniform phase
and a vanishing phase gradient ∇Φ= 0. Although we
have started from a massless model, from (13) and (16)
it follows that both these modes acquire non-vanishing
masses. In non-dimensional form and near the BFN
instability, the two sets of masses are

m± = c1,

m0 =−c3,
(17a)

such that
m± = |m0|

−1
. (17b)

Table 1: Actual vs. predicted mass scaling ratios for δ̄= 3.9.

Parameter ratio Behavior Actual Predicted

mu/mc δ̄−4 3.365× 10−3 4.323× 10−3

mc/mt δ̄−4 3.689× 10−3 4.323× 10−3

md/ms δ̄−2 0.052 0.066
ms/mb δ̄−2 0.028 0.066
me/mµ δ̄−4 4.745× 10−3 4.323× 10−3

mµ/mτ δ̄−2 0.061 0.066

MW /MZ
(

1− δ̄−1
)1/2

0.8823 0.8623

It is known that plane-wave solutions consist of both
positive and negative frequencies. Because mass is positive
definite, in what follows we are limiting the discussion to
the cases c1 > 0 and c3 < 0.

The Feigenbaum-Sharkovskii-Magnitskii (FSM)
paradigm. – The FSM paradigm of universal transition
to chaos in nonlinear dissipative systems is briefly detailed
in appendix B. Extensive numerical data [20,21] show that
both parameters of linear and nonlinear dispersion c1, c3
of (17a) are distributed in a geometric progression, that is

c1,n = c1,∞+K1δ
−n
,

c3,n = c3,∞+K2σ
−n,

(18)

where δ̄, σ̄ are scaling constants and n= 1, 2, 3 . . . repre-
sents the number of tori accumulated through bifurca-
tions. Since K1,K2, c1,∞ and c3,∞ are independent of n,
they can be both absorbed into a redefinition of masses.
We have, accordingly,

m∗n =
1

K1
(m±,n− c1,∞),

Mn =
1

K2
(m0,n− c3,∞).

(19)

The ratios of two arbitrary masses in the bifurcation
sequence take the form

m∗n
m∗n+p

= δ
p
,

Mn
Mn+p

= σp,

(20)

in which p= 2k, k= 1, 2, 3 . . .. Based on (17) it can be
concluded that, near the BFN instability, the two scaling
constants are linked to each other.
Analysis of the Renormalization Group flow for the

real Ginzburg-Landau equation leads to the following
relationship between δ̄ and σ̄ [28]:

1−

(

M1
M2

)2

= 1−
(

σ1
)2
≈
1

δ
, (21)

where M1 =MW , M2 =MZ are vector boson masses.
Table 1 shows a side-by-side comparison between predic-
tions inferred from (20) and experiment, where δ̄= 3.9
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Table 2: Actual values of elementary particle masses.

Parameter Value Units
mu 2.12 MeV
md 4.22 MeV
ms 80.90 MeV
mc 630 MeV
mb 2847 MeV
mt 170,800 MeV
MW 80.46 GeV
MZ 91.19 GeV

represents the numerical value of the scaling constant that
best fits laboratory data [30]. Actual values of particle
masses, computed at the reference scale given by the mass
of the top quark [31], are listed in table 2. Note that the
choice of the mass scale is completely arbitrary since (20)
involves ratios of consecutive masses.

CGLE and generalized exclusion statistics. –
Dispersion relation (13) indicates that plane-wave solu-
tions of CGLE interpolate between gauge boson states
(q= 0) and fermion states (q=±1). From (13) and (14) it
follows that the spin associated with an arbitrary mixed
state is given by1

σ= 1−
(∇Φ)2

2
. (22)

From this standpoint, CGLE is remarkably similar to
the framework describing quantum fractional statistics
in condensed-matter physics. In what follows we briefly
discuss this analogy. The generalized exclusion statistics
(GES) is motivated by the properties of quasi-particles
occurring in the fractional quantum Hall effect [32,33].
Consider a thermodynamic ensemble of N identical parti-
cles. Let d represent the dimension of the one-particle
Hilbert space obtained by fixing the coordinates of the
remaining N − 1 particles. The statistics of a particle is
defined by the so-called Haldane’s parameter g,

g=−
∂d(N)

∂N
≈−
d(N +∆N)− d(N)

∆N
. (23)

Because any given state can be populated by any number
of bosons, d(N +∆N) = d(N) and hence g= 0. By
contrast, the Pauli exclusion principle restricts fermions
to g= 1. Quasi-particles with mixed statistics are char-
acterized by an intermediate value of g and are said to
satisfy a generalized exclusion principle. In this case, it
can be shown that thermodynamic quantities such energy,
heat capacity or entropy can be expressed in factorized
form. In particular, the energy of the quasi-particle
ensemble is given by

E(g) = gE(1)+ (1− g)E(0). (24)

1Strictly speaking, spin is a concept that is valid only in a
quantum or semi-quantum context. Since our analysis is carried out
at the classical level, (22) is meant to simply denote a numerical
attribute of plane waves dependent on the wave number q.

Table 3: Comparison between CGLE and GES.

CGLE GES

q=−
∂|Φ|

∂x
g=−

∂d

∂N

mq = c1q
2− c3(1− q

2) Eg = gE(1)+ (1− g)E(0)

An example of this type of objects is offered by anyons,
quasi-particles that exist in two dimensions and carry
fractional charges. When two particles of a system of
bosons are exchanged, the phase of the system remains
unchanged, whereas for a system of fermions it changes by
exactly π. Exchanging two anyons results in a phase factor
that falls between zero and π. Anyons play a key role in
the fractional quantum Hall effect and high-temperature
superconductivity [32,33].
A short comparison between plane-wave solutions of

CGLE and GES is included in table 3.

Summary and conclusions. – This brief report has
been motivated by recent advances in nonlinear dynamics
and complexity theory. Exploiting the universal theory of
transition to chaos in nonlinear dissipative systems, we
have found that:

a) particles acquire mass as plane-wave solutions of
CGLE, without reference to the hypothetical Higgs
scalar or to a particular symmetry breaking mecha-
nism. As of today, the reality of the Higgs doublet and
nature of electroweak symmetry breaking are issues
that remain unsettled.

b) Starting from a basic model of Abelian gauge bosons
in interaction with scalar fields, CGLE leads to a
natural separation of heavy non-relativistic modes
(q= 0) from light relativistic modes of maximal group
velocity (q=±1). The most straightforward interpre-
tation of this result is that the first group of modes
corresponds to electroweak gauge bosons and the
second group to fermions.

c) A direct connection may be set up between GES
in condensed-matter physics and the dispersion rela-
tion (13) corresponding to q �= 1. Although different
in methodology and content, both GES and CGLE
point out that fractional quantum statistics and non-
equilibrium field theory enable a dynamic unification
of gauge bosons and fermions as particles with arbi-
trary spin. This is in contrast with super-symmetry
and related models (see, e.g., [34]) which are based
on extended symmetry groups and pay virtually no
attention to nonlinear dynamics of underlying fields.

We close this section with two short remarks: 1) the
approach developed here is based on classical field theory.
Needless to say, a realistic model cannot ignore the
quantum nature of fields evolving in four-dimensional
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space-time. However, as previously pointed out, future
results are not expected to substantially deviate from
these initial findings because of universality arguments
related to nonlinear dynamics of (8) and CGLE (see,
e.g., [13,18,20]); 2) although our approach bypasses the
conventional Higgs mechanism, it still remains compatible
with it. The standard model asserts that particle masses
are generated through electroweak symmetry breaking and
are attributed to the Yukawa couplings of the fermions
(gf ) to the Higgs condensate (vH0). The ratio of two
arbitrary fermion masses in the spectrum is given by

mf
mf ′
=
gf (vH0)

gf ′(vH0)
=
gf
gf ′
. (25)

It follows that the mass hierarchy shown in table 1 may
be simply interpreted as reflecting the hierarchy of the
corresponding Yukawa couplings.
Future research may be focused on a deeper under-

standing of pattern formation and its ramifications in the
realm of SM and beyond. Of key interest is the emer-
gence of novel states in the TeV range of particle physics.
This probing energy will become accessible in the near
future at the large hadron collider and other accelerator
sites [35].

Appendix A. – The two dispersion parame-
ters of CGLE are subject to the following dynamic
constraints [13,16,17]:

a) the Benjamin-Feir-Newell (BFN) criterion states that
stability becomes borderline for

c1c3 = 1; (A.1)

b) using (13), the group velocity of the plane-wave
solutions is given by

vg = 2q(c1+ c3). (A.2)

Compliance with relativity bounds (A.2) to a constant
that represents the normalized value of light speed in
vacuo. It is clear that q= 0 represents a slow mode
(massive gauge boson), while q=±1 describes the fastest
mode (relativistic fermions). Masses associated with these
modes are supplied by (17). From the BFN criterion it
follows that the borderline value of the normalization
constant Q=

vg,max
2 can be determined from

c1 =
Q±
√

Q2− 4

2
⇒Q� 2,

c3 =
1

c1
.

(A.3)

Equations (A.1) and (A.2) imply that, close to the border
of BFN instability, gauge boson and fermion masses
scale as dual entities. This finding is consistent with the
behavior of the last entry in table 1.

Appendix B. – Consider the following boundary
value problem for CGLE in 1+1 space-time dimen-
sions [20,21,36]:

∂tA=A+(1+ ic1)∂
2
xA− (1− ic3) |A|

2
A,

∂xA(0, t) = ∂xA(L, t) = 0, A(x, 0) =A0(x),

0� x�L, 0� t�∞.

(B.1)

This model can be reduced to a three-dimensional system
of nonlinear ordinary differential equations with the help
of the Galerkin few-modes approximation:

A(x, t)≈
√

ξ(t) exp[iθ1(t)]+
√

η(t) exp[iθ2(t)] cos
(π

L
x
)

(B.2)

in which

∂tξ = f1(ξ, η, θ, c1, c3, L),

∂tη= f2(ξ, η, θ, c1, c3, L),

∂tθ= f3(ξ, η, θ, c1, c2, L)

(B.3)

with θ(t) = θ2(t)− θ1(t). It can be shown that the transi-
tion to chaos in (B.3) occurs through a sequential cascade
of bifurcations in three separate stages. This cascade starts
with the Feigenbaum scenario of period-doubling bifurca-
tions of stable cycles, followed by the Sharkovskii subhar-
monic cascade and ending with the Magnitskii cascade of
stable homoclinic cycles.
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